DENSIFICAÇÃO DE COMPÓSITOS DE COBRE-GRAFITE

Clébio de Azevedo Santos¹ e José Nilson França de Holanda²

(1) HTTP://WWW.ETFCAM. G12.br, Webmaster @ Etfcam. G12.br
(2) UENF-LAMAV, 28015-620, Campos-RJ, Holanda @ ucnf.br

Resumo

Neste trabalho são apresentados os resultados obtidos no estudo de densificação de compósitos de cobre-grafite, tendo em vista a aplicação destes materiais em contatos elétricos. Foram utilizadas duas composições: Cu - 5% peso C e Cu - 20% peso C. Os póis misturados foram compactados por prensagem uniaxial em matriz de aço temperado (ϕ = 8mm) em 200 MPa. As condições de sinterização utilizadas foram: 950°C/10 min, 950°C/20 min, 950°C/40 min e 950°C/60 min. Foram analisados os seguintes parâmetros: a variação de massa, a contração linear, a densidade aparente e a morfologia das amostras sinterizadas em função das condições de sinterização.

1 Introdução

Um acompanhamento adequado da etapa de sinterização é de suma importância na investigação das condições de processamento desses compósitos para a fabricação de contatos elétricos. A temperatura, o tempo de sinterização e a atmosfera usada são parâmetros importantes no controle da densificação final do compacto, influenciando significativamente nas propriedades mecânicas e elétricas dos compósitos de cobre-grafite.

No presente trabalho é feito um estudo sobre a densificação de compósitos de cobre-grafite, onde foram utilizadas duas composições: Cu-5% peso C e Cu-20% peso C. O pó de cobre utilizado foi obtido por atomização. A avaliação da sinterização é feita através dos seguintes parâmetros: variação de massa, contração linear e densidade aparente das amostras sinterizadas. Por último, a morfologia das amostras de compactos de cobre-grafite foram também avaliadas qualitativamente em função das condições de sinterização.

2 Procedimento Experimental

Os compósitos de Cu-5% peso C e Cu-20% peso C estudados neste trabalho são obtidos via rota da Metalurgia do Pó. O pó de cobre atomizado (MetaLPó PAM-2) apresenta um mínimo de 65% - 325 mesh (<44mm) com uma massa específica aparente na faixa de 2,40 a 2,80 g/cm³. A morfologia das partículas de cobre é tipicamente irregulares. O pó de grafite (FPA-0402) apresenta um mínimo de 96,3% - 325 mesh e densidade aparente de 0,24 g/cm³. A etapa de mistura e homogeneização dos póis nas proporções pré-determinadas foi realizada num misturador cilíndrico a 63 rpm durante 30 minutos. Análise por MEV (Figuras 1 e 2) mostra uma boa distribuição das partículas de grafite na matriz de cobre para ambas as composições.
As amostras de trabalho foram compactadas numa prensa hidráulica manual, marca Schwing Siva, modelo PHMA com capacidade de 30 toneladas, utilizando-se uma matriz de aço com cavidade cilíndrica (Ø=8mm). A pressão de compactação empregada foi de 200 MPa (SANTOS, 1998).

A sinterização das amostras foi realizada num forno elétrico tubular, utilizando-se uma atmosfera redutora de 90% de nitrogênio e 10% de hidrogênio. A temperatura de sinterização empregada foi de 950ºC durante 10, 20, 40 e 60 minutos.

As dimensões das amostras foram medidas com auxílio de um micrômetro digital com tolerância de ±0,01 mm e, a massa, em balança analítica com tolerância ±0,001 g.

Figura 1 - Morfologia e distribuição das partículas dos póis misturados para a composição Cu-5% peso C (MEV-1000x).

Figura 2 - Morfologia e distribuição das partículas dos póis misturados para a composição Cu-20% peso C (MEV-1000x).

Foram determinados os seguintes parâmetros em função das condições de sinterização: variação de massa, contração linear e densidade aparente.

A variação de massa das amostras durante a sinterização foi determinada a partir da relação:

\[(\frac{Dm}{mo})\% = \frac{(ms - mo)}{mo} \times 100 \quad (1)\]

em que e mo são as massas das amostras sinterizadas e a verde, respectivamente.

O parâmetro de contração linear (DL/Lo) foi determinado a partir da relação:

\[(\frac{DL}{Lo})\% = \frac{(Ls - Lo)}{Lo} \times 100 \quad (2)\]

em que Ls e Lo são as medidas dos diâmetros das amostras sinterizadas e a verde, respectivamente.

A densidade aparente dos compósitos sinterizados (Ds) foi determinada através da relação:

\[Ds = \frac{Ms}{V} \quad (3)\]

em que Ms é a massa e V o volume aparente da amostra sinterizada.

A avaliação da microestrutura das amostras sinterizadas é uma das etapas importantes deste trabalho. A presença do grafite e sua distribuição na matriz de cobre, bem como a porosidade, foram observadas por microscopia eletrônica de varredura (ZEISS, modelo DSM 962).

3 Resultados e Discussões

A Figura 3 mostra a variação de massa em função do tempo de sinterização dos compósitos de Cu-5% peso C e Cu-20% peso C.

Figura 3 - Variação de massa versus tempo de sinterização, para as duas composições estudadas.

Os resultados mostram que as amostras sofrem uma pequena variação de massa durante o processo de sinterização. A variação de massa (perda ou ganho) observada é de ordem de ±0,25%, para todo intervalo de tempo de
sinterização empregado. Isto indica que a atmosfera redutora usada na sinterização foi eficiente.

A variação de massa normalmente observada durante processos de sinterização está intimamente relacionada às características dos materiais utilizados. Quando ocorre variação positiva, ou seja, ganho de massa, o material absorve gases da atmosfera de sinterização. Quando ocorre variação negativa, ou seja, perda de massa, é provável que impurezas de mais baixas pressões de vapor, superficiais ou interiores às partículas, evaporem.

Pode-se observar na figura 3 que para a composição Cu-5% peso C, a perda de massa permanece praticamente constante até o tempo de sinterização de 40 minutos. Para o tempo de 60 minutos verifica-se um maior perda, provavelmente devido à redução de óxidos residuais superficiais presentes nas partículas do pó de cobre, que exige um tempo mais longo para sua eliminação. Cabe ressaltar também que os óxidos são reduzidos durante a sinterização com a formação de vapor de água. Para a composição Cu-20% peso C, observa-se um pequeno ganho de massa para tempos de sinterização acima de 10 minutos. Isto provavelmente está relacionado à maior concentração de grafite, que, dada a sua afinidade com hidrogênio presente na atmosfera redutora usada, tende a reagir com a mesma formando compostos gasosos do tipo Cx Hy. Estes compostos tendem a difundir-se para dentro dos poros (DOMBROSKI, 1992).

A Figura 4 mostra o comportamento do parâmetro de contração linear em função do tempo de sinterização para as duas composições sinterizadas a 950°C.

Os resultados revelam que as amostras da composição Cu-5% peso C apresentam baixo valor de contração linear, com valor máximo em torno de 1,3%, quando submetidas à sinterização durante 20 minutos. Estes valores obtidos para o parâmetro de contração linear estão associados à aproximação de cenros e rearranjo das partículas com eliminação de eventual porosidade.

Em compósitos de cobre-grafite sinterizados à alta temperatura, a porosidade fecha rapidamente, fazendo com que a transição de uma estrutura de poros abertos para uma estrutura de poros fechados ocorra em uma faixa muito estreita de tempo. Isto corresponde à transição do segundo para o terceiro estágio de sinterização.

Para a composição Cu-20% peso C, observa-se que ocorreu expansão da estrutura sinterizada em todo intervalo de tempo de sinterização estudado. A explicação para isto pode estar relacionada à expansão do gás aprisionado na porosidade durante a compactação causada pela elevação da temperatura (LENEL, 1980). O gás aprisionado é, geralmente, a atmosfera ambiente que fica presa nos poros durante a compactação do pó. No entanto, é importante ressaltar que estes gases podem, também, ser originados de evaporação ou de reações químicas com a atmosfera de sinterização levando à formação de vapor d’água e / ou CO₂, causando expansão dos poros residuais, neutralizando a densificação e resultando em baixa densificação do compacto após sinterização.

A Figura 5 mostra os valores para a densidade aparente das amostras sinterizadas em função do tempo de sinterização, para as duas composições de cobre-grafite. Para efeito de comparação, são dados os valores da densidade a verde (200 MPa) para ambas as composições.
Os resultados mostram que, para a composição de Cu-5% peso C, os valores de densidade aparente obtidos são superiores ao valor da densidade a verde do compacto em todo intervalo de tempo de sinterização, comprovando-se a densificação das amostras. Nota-se que a densidade aparente das amostras atinge um valor máximo para o tempo de sinterização de 20 minutos. A partir de então, os valores de densidade permanecem praticamente constantes. Para a composição Cu-20% peso C, verifica-se uma diminuição dos valores de densidade das amostras sinterizadas em relação à densidade a verde do compacto prensado em 200 MPa. A explicação dada para isto é a ocorrência de empolamento das amostras devido à expansão do gás aprisionado nos poros, que ocorre durante o processo de sinterização (DOMBROSKI, 1992). Para sinterização a partir de 20 minutos a densidade aparente permanece constante.

As sequências de Figuras 6 (a-d) e Figuras 7 (a-d) mostram os aspectos das microestruturas de sinterização dos compósitos de Cu-5% peso C e Cu-20% peso C para todas as condições de sinterização estudadas. Observando-se a composição de Cu-5% peso C, para sinterização até 10 minutos (figura 6 - a), nota-se que existem entre as partículas de cobre e grafite poros conectados. Para um tempo de sinterização acima de 10 minutos, a microestrutura permanece praticamente constante com a porosidade quase que completamente fechada e esferoidizada, corroborando os resultados da literatura para a sinterização destes materiais a alta temperatura.

Em todas as figuras, observa-se também a boa distribuição do grafite adicionado (cor parda) à matriz de cobre (cor clara), independente da composição. Não é observada nenhuma ilha ou aglomerado, seja de partículas de pó de cobre ou de grafite na estrutura dos compósitos sinterizados, indicando a eficiência do processo de mistura dos pó.

Figura 6 – Micrografias (MEV- 500x) da composição Cu-5% peso C sinterizada a 950° C. (a) - 10 min, (b) - 20 min, (c) - 40 min e (d) - 60 min.
Figura 7 – Micrografias (MEV- 500x) da composição Cu-20% peso C sinterizada a 950° C. (a) - 10 min, (b) - 20 min, (c) - 40 min e (d) - 60 min.

Para a composição de Cu-5% peso C, as partículas do pó de cobre estão mais juntas, sendo circundadas pelas partículas de grafite. Para a composição de Cu-20% peso C, embora se observe nas micrografias das Figuras 7 (a-d) a existência de coalescência entre as partículas de cobre, as mesmas estão completamente ilhadas pelas partículas de grafite. Este efeito provoca uma diminuição significativa na integridade mecânica da estrutura sinterizada dos compósitos do tipo metal-grafite, principalmente quando o teor metálico do compósito está abaixo de 80% em peso.

4 Conclusões

Em face dos resultados apresentados, pode-se chegar às seguintes conclusões:
1) nas condições de sinterização usada, as composições em estudo apresentaram variação de massa desprezível (± 0,25%);
2) as amostras de composição Cu-5% peso C apresentaram baixa contração linear (1,3%), nas condições de sinterização empregada. As amostras de composição Cu-20% peso C apresentaram expansão e empolamento;
3) as amostras de composição Cu-5% peso C experimentaram ganho de densificação em todo intervalo de tempo de sinterização em estudo. Para as amostras de composição Cu-20% peso C foi observado queda de densificação;

4) tempos de sinterização longos: acima de 20 minutos para compósitos de Cu-5% peso C e acima de 10 minutos para compósitos de Cu-20% peso C não são efetivos quando empregados para densificação destes compósitos em alta temperatura.

5 Referências bibliográficas

